

CDMX a 26 de mayo de 2025.

PLANEACION DE CURSO

I. Información general.

1. Nombre v clave de la UEA

Mecánica Elemental I 2110019 Grupo: **CA01 Trimestre 25-P**

2. Horario de clases teóricas y prácticas (si las hay).

Lun-Mie-Vie 8-10 h salón B101.

3. Horario de asesorías por parte del profesor y del ayudante.

- a. Taller de discusión continuo en clases.
- b. Con profesor: Oficina T-358. Martes 15-16 h + horario abierto sujeto a disponibilidad.
- c. Con ayudante: Oficina T-139, lunes a jueves 11-12 h.
- d. (Preferente) Foro de discusión continuo en VIRTUAMI con profesor y ayudante.
- e. (Secundario) Correo electrónico. Profesor y ayudante.

4. Nombre del profesor y del ayudante (si es el caso).

Profesor: Hugo Aurelio Morales Técotl.

Ayudante: Ricardo Misael Caballero Cárdenas.

5. Medios de contacto para consultas al profesor y al ayudante.

Para discusiones y consultas se usarán foros de Moodle.

Medio de contacto: correo electrónico Profesor: hugo@xanum.uam.mx Ayudante: rmcc@xanum.uam.mx

Sólo se atenderán mensajes que incluyan la siguiente información

Asunto: MECANICA ELEMENTAL I

Texto: NOMBRE COMPLETO DE LA ALUMNA O ALUMNO

II. Información sobre el Programa.

II.a. Contenido.

6. Objetivos del curso.

Objetivos Generales

Que al final del curso el alumno sea capaz de:

- Desarrollar la habilidad de razonamiento para explicar fenómenos físicos sencillos.
- Comprender la importancia de una teoría para el entendimiento y predicción de fenómenos.
- Aplicar los elementos teóricos básicos de la mecánica de partículas

Objetivos Específicos

Que al final del curso el alumno sea capaz de:

- Explicar el papel de las magnitudes físicas, escalares y vectoriales, y de las leyes que las relacionan para entender el movimiento de sistemas de partículas.
- Plantear y resolver problemas sencillos de la mecánica de partículas, aplicando métodos algebráicos.
- Interpretar gráficas para analizar el movimiento de partículas.

7. Calendarización de los temas del curso de acuerdo al Programa de la UEA:

- 1. (Sem. I). Mediciones, magnitudes y sistemas de unidades.
 - La utilidad y necesidad de medir en la física: confrontación entre "ideas previas" y los experimentos.
 - Magnitudes físicas y ejemplos: longitud, masa, tiempo, área, volumen, densidad, velocidad, etcétera.
 - El Sistema Internacional de unidades y conversiones de unidades.
 - Estimaciones mediante órdenes de magnitud
- 2. (Sem. II). Movimiento en una dimensión.
 - Posición, velocidad y rapidez.
 - Velocidad y rapidez instantáneas.
 - Aceleración.
 - Movimiento undimensional con aceleración constante.
 - Caída libre y tiro vertical.
- 3. (Sem. III). Escalares y vectores.
 - Magnitudes escalares y ejemplos: masa, tiempo, densidad.
 - Magnitudes vectoriales y ejemplos: posición, desplazamiento, fuerza velocidad y aceleración.
 - Componentes cartesianas, módulo y dirección de un vector.
 - Suma y resta de vectores. Multiplicación de un vector por un escalar.
 - Proyección de un vector sobre otro y producto escalar.
 - Movimiento en 2 dimensiones.
 - Movimiento de proyectiles.
- 4. (Sem. IV-V). Fuerzas y equilibrio.
 - Conceptos de inercia y fuerza.
 - Fuerzas en la naturaleza: fenomenológicas (empuje, tensión, fricción) y fundamentales (gravitacional, electrostática).
 - Masa como medida de la inercia.
 - Fuerza neta.
 - El equilibrio en reposo y la condición de fuerza neta igual a cero.
- 5. (Sem. VI). Primera ley de Newton sobre el movimiento inercial.
 - Sistema de referencia: coordenadas para el espacio y el tiempo.
 - Movimiento relativo con velocidad constante. Descrpición cinemática por medios algebráicos y gráficos.
- 6. (Sem. VII-VIII). Segunda ley de Newton sobre la fuerza neta y la aceleración.
 - La aceleración como función de la fuerza neta y la masa.
 - Movimiento con velocidad constante a consecuencia de que la fuerza neta sea cero.

- Movimiento con aceleración constante a consecuencia de que la fuerza neta sea constante. Descripción cinemática por medios algebráicos y gráficos.
- Lanzamiento de proyectiles.
- Concepto de movimiento con aceleración variable.
- 7. (Sem. IX). Tercera ley de Newton sobre la interacción.
 - Una interacción entre dos objetos siempre involucra dos fuerzas acción y reacción.
 - Las fuerzas de acción y de reacción actúan sobre objetos distintos.
 - Algunas confusiones usuales: la fuerza normal no es la reacción asociada al peso de un objeto, en un choque el objeto más masivo no ejerce mayor fuerza sobre el menos masivo.
 - 8. (Sem. X). Trabajo y energía cinética.
 - Trabajo como función de la fuerza y el desplazamiento.
 - Energía cinética y teorema de trabajo-energía cinética.
 - Potencia.
 - 9. (Sem. XI). Energía potencial y conservación de energía mecánica.
 - Fuerzas conservativas y no conservativas.
 - Energía potencial. Ejemplos: energía potencial gravitacional y energía potencial elástica.
 - Conservación de la energía mecánica.

*Fechas de temas a tratar, de tareas y trabajos a entregar, de evaluación, etc.

Tareas semanales (10):

Entrega exclusiva en GRADESCOPE. Límite cada <u>domingo</u> a partir de semana I, 11 PM.

- Foros de discusión y consulta: Virtuales. Continuos.
- Taller de discusión continua en clases: Se evaluarán los reportes de cada clase por equipos de 5 personas.
- Exámenes Departamentales Parciales (2):

Semana V, lunes 23 de junio, 16:00–18:00. Semana IX, lunes 21 de julio, 16:00–18:00.

- Examen Departamental Global (1): Semana XII, lunes 11 de agosto.
- RESULTADOS Y REVISIÓN DE EXÁMENES Y REPORTES: <u>Exclusivamente</u> en día y hora acordada con el grupo y el ayudante. No se admitirán revisiones de exámenes semanales o parciales previos.

CALENDARIO DE TAREAS Y EXÁMENES												
ACTIVIDAD	SEMANA											
		II	Ш	IV	V	VI	VII	VIII	IX	Χ	XI	XII
Taller de discusión continuo	/	~	~	/	/	/	/	~	/	/	~	
Tareas semanales		T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	
Examen Departamental Parcial					P1				P2			
Examen Departamental Global												G

8. Libro de Texto y bibliografía.

- 1. LIBRO DE TEXTO: Serway, R.A. y Jewett, J.W., Física para las Ciencias e Ingeniería, Vol. 1, 7ª Edición, CENGAGE Learning, 2008.
- 2. Braun, E., Física 1: Mecánica, México: Trillas, 1991.
- 3. Del Río F., El arte de investigar, México, UAM, 1990
- 4. Hewitt, P. G., Física conceptual, 10a ed., México: Pearson Educación 2007
- 5. Hewitt, P. G., Fundamentos de física conceptual, México: Pearson Eduación 2009.
- Kittel, C., Knight, W. D. y Ruderman, M. A., Mecánica. Berkeley Physics Course Vol. 1, 2a ed. Barcelona: Ed. Reverté, 1999.
- Manzur, A., Experimentos de demostración de mecánica elemental, México: UAM-Plaza y Valdés, 2009.
- 8. Manzur, A., Pasos para la resolución de problemas. Ejemplos de mecánica elemental. México: UAM-Plaza y Valdés, 2005.
- 9. McDermott, L. y Shaffer, P., Tutoriales para Física Introductoria, Buenos Aires: Pearson-Prentice Hall 2001.
- 10. Resnick, R., Halliday, D. y Krane, K., Física, Vol. I, 5a ed. México: CECSA, 2004.
- 11. Resnick, R., Halliday, D. y Walker, J., Fundamentos de Física, Vol. 1, 6a ed. México: Patria, 2001.
- 12. Sears, F. W., Zemansky, M, W., Young, H. D. y Freedman. R. A., Física Universitaria Vol. 1, 12a ed. México: Pearson Educación, 2009.
- 13. Serway, R. A. y Beichner, R. J., Física para ciencias e ingenierías, Vol. 1 México: McGraw Hill, 2002.
- 14. Tipler, P. A. y Mosca, G., Física para la ciencia y la tecnología, Vol. 1 Barcelona: Reverté, 2005.

II.b.Evaluación.

9. Modalidades de evaluación conforme al Programa de la UEA (exámenes parciales y global, reportes o trabajos asignados, tareas, exposición de temas, etc.).

Tareas semanales. Taller de discusión continua. Exámenes parciales Departamentales. Examen global Departamental.

10. Ponderación de cada elemento de evaluación.

Actividad	Ponderación			
Tareas Semanales	25%			
Taller de discusión continua	25%			
Exámenes Parciales	20% (10% c/u)			
Examen Global Departamental	30%			
TOTAL	100%			

11. Criterios y escalas para asignación de la calificación.

MB	8.7 - 10
В	7.4 - 8.6
S	6.0 - 7.3
NA	0.0 - 5.9

El profesor realizará una estancia académica en la Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, del 9-14 de junio (Semana III). En este periodo se realizará: (i) Taller con al ayudante en el horario de clase e (ii) Se repondrán clases con el profesor, previa y posteriormente, en fechas acordadas con el alumnado.

Dr. Hugo A. Morales Técotl