
Distribución espacial del carbono orgánico  117

Distribución espacial del carbono 
orgánico total en el sedimento 
superficial de la planicie abisal  
del Golfo de México

F.J. García-Villalobos y E. Escobar-Briones

117

Introducción

La materia orgánica en los sedimentos marinos juega un papel importante, 
proporciona un reservorio en el ciclo global del carbono y se vincula con la 
diagénesis temprana contribuyendo en la química del océano. La materia 
orgánica en los sedimentos abisales es de origen predominantemente marino 
(Chester 2000), generada por la fijación fotosintética del carbono inorgánico 
a partir del CO2 atmosférico por las plantas superiores en la tierra y el fito-
plancton en el ambiente marino. Esta producción primaria del fitoplancton 
(PP) es suficientemente grande para sostener consumidores, protistas y des-
componedores, y se ha estimado en el orden de 40 a 50 GtC año-1 (Langhurst 
et al. 1995). Sólo una pequeña cantidad del carbono orgánico (CO) (1.5% de 
la PP en mar abierto y >17% en el talud) se deposita en el sedimento superfi-
cial y está disponible para el bentos, donde la mayor parte es oxidado (Setter 
et al. 2004). Existe información que sugiere que se secuestra entre el 0.5% al 
3% de la producción primaria (PP) sobre la plataforma y el talud continen-
tales y 0.014% en el mar abierto (Wollast 1998). Los márgenes continentales 
representan sólo una pequeña porción del 20% de la superficie mundial del 
océano; sin embargo, el 80% de la materia orgánica acumulada globalmente 
es depositada en estos sitios, constituyendo el depósito principal de carbono 
en el océano (Naijar et al. 1992, Seiter et al. 2004).
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El flujo de CO disminuye rápidamente conforme aumenta la profundidad 
en la columna de agua ya que éste es remineralizado (Suess 1980). En la escala 
de las grandes cuencas oceánicas, la acumulación de la materia orgánica, en 
términos de carbono orgánico total (COT), básicamente refleja los patrones de 
distribución de la PP. Regionalmente existe una variabilidad a pequeña escala 
en los procesos sedimentológicos y biogeoquímicos que no sigue esta sencilla 
relación y así se ha demostrado en estudios diversos (Seiter et al. 2004).

El análisis elemental permite determinar el carbono total y orgánico en el 
sedimento. El carbono total se determina a partir de una muestra de sedimento, 
mientras que para la determinación del CO es necesario tener las muestras 
de sedimento libres de carbonato (Stein 1991). 

Los sedimentos de mar profundo provienen del depósito de partículas 
en aguas oceánicas con profundidad mayor a los 500 m. Factores como la 
reactividad entre componentes y partículas disueltas en la columna de agua, 
la presencia de una producción distintiva de biomasa o las fuentes lejanas 
de tierras continentales, hacen de éste un ambiente único en el planeta. Este 
ambiente sedimentario que cubre más del 50% de la superficie de la Tierra, 
tiene características diferentes de las que se encuentran en los ambientes 
continentales o transicionales. Los componentes de los sedimentos del mar 
profundo se han dividido en cuatro tipos por su origen. Dos de las caracte-
rísticas distintivas de los sedimentos del mar profundo son (1) el tamaño de 
partícula y (2) la tasa de sedimentación de sus componentes (Chester 2000). 
Se denomina sedimentos o lodos pelágicos biogénicos a los sedimentos que 
contienen > 30% de remanentes de esqueletos biogénicos y corresponden a 
lodos calcáreos. Tal es el caso del GdM, cuyos sedimentos contienen > 30% 
de esqueletos carbonatados y son clasificados basándose en los organismos 
presentes en lodos de foraminíferos, cocolitos y pterópodos. Las fracciones 
terrígenas de los sedimentos del mar profundo son principalmente del tamaño 
de las arcillas (diámetro < 2 µm) que usualmente componen entre 60% y 70% 
del material no biogénico. Gran parte del CO que alcanza la superficie del 
sedimento se destruye por oxidación al inicio de la secuencia diagenética. El 
presente estudio tuvo como objetivo caracterizar la composición elemental 
del carbono en el sedimento superficial abisal del GdM.

Antecedentes

Los estudios existentes sobre la distribución del CO en sedimentos del mar pro-
fundo muestran concentraciones que van de 5% en sedimentos hemipelágicos 
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depositados cerca de los márgenes continentales a <1% en arcillas pelágicas 
(Chester 2000). Las primeras compilaciones de COT en sedimentos superfi-
ciales se realizaron en las décadas de los sesenta y setenta y fueron resumidas 
por Seiter et al. (2004). El patrón reconocido ubica valores de COT >0.5% a 
lo largo de los márgenes continentales y <0.5% en las grandes cuencas. El 80% 
de las localidades se localiza en la plataforma y talud continental, en contraste 
las grandes cuencas oceánicas se encuentran pobremente documentadas. Las 
costas ubicadas al oeste de los continentes poseen una media de COT mayor 
que el promedio global, debido a la productividad >200 gC m-2 año-1. Los va-
lores de casi 50% de la PP depositada en la plataforma continental decrecen 
gradualmente hasta cerca de 1% en aguas pelágicas entre 5000 y 6000 m de 
profundidad (Suess 1980).

El área de estudio

El Golfo de México (GdM) es una cuenca marginal semicerrada del Océano 
Atlántico occidental con un área de 1.5 × 106 km2, que se sitúa en la zona 
subtropical entre 18–30°N y 82–92°W. Se comunica con el Océano Atlántico 
y el Mar Caribe por el estrecho de Florida y por el Canal de Yucatán, respec-
tivamente (Balsam y Beeson 2003, Monreal y Salas 1997). La estructura del 
GdM muestra siete provincias geológicas descritas por Antoine (1972) en la 
que el área de estudio se ubica en la planicie abisal Sigsbee que cubre 24% del 
GdM y cuya profundidad máxima (3900 m) se localiza en el sector central 
occidental de la cuenca. En la planicie el sedimento es fino, originado del ma-
terial carbonatado procedente de la columna de agua (Balsam y Payne 2003). 
En el fondo, desde el talud continental existen infiltraciones de hidrocarburos 
con hidratos de metano (Arvidson y Morse 2004, MacDonald et al. 2004).

El intercambio entre las masas de aire frío y seco que provienen del con-
tinente y las masas de aire propias del golfo de origen marítimo y tropical, 
provoca una fuerte frontogénesis (“Nortes”) entre los meses de octubre a abril. 
Durante el verano esta región es afectada por tormentas tropicales, de las 
cuales 60% tiene intensidades de huracán (Monreal y Salas 1997). Estos son 
mecanismos que promueven la mezcla y producción primaria junto con los 
grandes giros (Río Mississippi) y otras estructuras de mesoescala (Lohrenz et 
al. 1999). Entre estas estructuras se encuentran aquellos factores que controlan 
la cinética para la dispersión de nutrientes y plancton en el GdM que ocurren 
en diferentes escalas de espacio y tiempo. Los nutrientes, por ejemplo, son 
llevados a la zona eufótica a través de la surgencia asociada a la Corriente de 
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Lazo y a los giros asociados a la misma (un giro ciclónico o frío y uno anti-
ciclónico o cálido) (Biggs y Müller-Karger 1994). Así, en la escala de tiempo, 
la variabilidad en la Corriente de Lazo está en el orden de meses pero no está 
coordinada con el ciclo anual de radiación solar, mientras que la descarga de 
los principales ríos tiene un máximo anual (Wiseman y Sturges 1999).

En escala local, la PP es controlada por otros factores, entre los que se in-
cluyen a los fuertes y variables gradientes físicos y químicos, como ocurre al 
norte del GdM, como consecuencia de las descargas de los ríos más pequeños 
como el Atchafalaya, además del efecto de las mareas y la circulación regional 
(Lohrenz et al. 1994, 1999).

Por debajo de los 2000 m las aguas son frías con una temperatura media 
de 4°C. A excepción de una zona de mínimo oxígeno a 500 m, las aguas pro-
fundas del GdM se encuentran bien oxigenadas (5.00–5.75 ml l–1; Caso et al. 
2004, Escobar-Briones 2000). El contenido de materia orgánica se distribuye 
por efecto de la dilución de la materia orgánica por el material terrígeno pro-
veniente de las zonas cercanas a la costa (Balsam y Payne 2003). 

Este estudio se justifica en el marco de la exportación del carbono de 
origen fotoautotrófico pelágico y del transportado lateralmente al fondo, lo 
que permite la existencia de comunidades biológicas bénticas complejas en 
la planicie abisal ayudando a secuestrarlo. Partiendo de la premisa de que el 
GdM es una cuenca oceánica oligotrófica, la distribución de CO en los sedi-
mentos sería homogénea.

Metodología

Las muestras de sedimento se recolectaron a bordo del B/O Justo Sierra en las 
diferentes campañas oceanográficas SIGSBEE (fig. 1) usando un nucleador 
múltiple con el que se tomaron los 5 cm superficiales de diversas réplicas para 
el análisis elemental. Los sedimentos se congelaron abordo hasta su posterior 
análisis en el laboratorio. También se trabajaron valores procedentes de otras 
campañas en la región (fig. 1).

El sedimento se descongeló a temperatura ambiente, y se acidificó con una 
solución de ácido clorhídrico 0.2 N para eliminar la fracción inorgánica prin-
cipalmente compuesta por carbonato de calcio. Se eliminó el exceso de ácido 
por medio de enjuagues con agua destilada dejando evaporar en un horno a 
temperatura de 60° C para finalmente moler y homogenizar la muestra.

Las muestras se analizaron en un Analizador Elemental FISSONS modelo 
EA1108. El método analítico se basa en la oxidación instantánea y cuantitativa 
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de la muestra, la cual convierte todas las sustancias orgánicas e inorgánicas en 
productos de combustión. Los gases que resultan de esta combustión pasan a 
través de un horno de reducción y son arrastrados a una columna cromatográ-
fica por un gas acarreador (He) donde son separados y cuantificados por un 
detector de conductividad térmica (TCD), el cual da una señal proporcional 
a la concentración de los componentes individuales de la mezcla. 

Las muestras fueron analizadas por duplicado, empleando cistina como 
compuesto calibrador. La metodología se evaluó para determinar su exactitud 
y precisión, permitiendo tener un coeficiente de variación menor a 3%. Los 
resultados reflejan el porcentaje del CO en los sedimentos secos y libres de 
carbonato.

Figura 1. Área de estudio. Los marcadores muestran cada una de las 106 localidades 
de donde provienen las muestras de sedimento analizadas para COT elemental

Longitud

La
tit
ud



Los procesos biogeoquímicos del carbono122 

Resultados

Los valores medios de COT por estación variaron en un intervalo de 0.26 a 
1.78%, con una media de 0.91 ± 0.27 para las 106 localidades muestreadas. Por 
estrato de profundidad (tabla 1) se reconocen las medias más elevadas entre 
1025 m a 1500 m (1.09 ± 0.34% COT, n = 7) los cuales disminuyen entre 1510 
m a 2000 m (0.80 ± 0.30% COT, n = 10); para incrementarse nuevamente hacia 
la profundidad con valores menos elevados en el fondo (0.94 ± 0.37% COT n 
= 43, entre 3520 m a 3795 m) con respecto al estrato más somero (fig. 2).

Figura 2. Variación de los valores medios de COT 
en el sedimento superficial en las diferentes profundidades

La distribución de COT en el sedimento superficial abisal del GdM muestra los 
valores más bajos asociados a la porción central de la cuenca y los más elevados 
asociados al Cañón de Campeche, los montes de Sigsbee y Campeche, frente al del-
ta del Río Mississippi y en colindancia con los escarpes de Campeche y Sigsbee.

El número mayor de muestras (n = 62) a más de 3000 m varían entre 0.26 
a 1.61% COT y presentan una distribución heterogénea en el plano geográfico 
(fig. 3).
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Tabla 1. Promedio (x), desviación estándar (de) e intervalo con valores máximo máx) y 
mínimo (mín) de carbono orgánico para los estratos de 500 m de profundidad del mar 

profundo en el suroeste del Golfo de México. Muestras obtenidas en las campañas SIGSBEE 
(S), Promebio (PRO) y la campaña en colaboración con Texas A & M University (DGoMB). 

n = número de estaciones ubicadas en cada estrato de profundidad

       Estrato
  profundidad 	 Estadístico	 %C	 n	 Campañas
        (m)

1025 a 1500	  x	 1.09	 7	 PRO2, S1, S2, S3, S4
	 de	 0.34		
	 máx	 1.78		
	 mín	 0.71
		
1510 a 2000	  x	 0.80	 10	 PRO1, PRO2, S1, S2, S3, S5
	 de	 0.13		
	 máx	 1.08		
	 mín	 0.63		

2100 a 2500	  x	 0.82	 15	 PRO1, PRO3, S1, S2, S3, S4, S5
	 de	 0.16		
	 máx	 1.03		
	 mín	 0.51

2520 a 3000	  x	 0.89	 12	 PRO1, PRO3, S1, S2, S3, S4, S5
	 de	 0.30		
	 máx	 1.60		
	 mín	 0.58
		
3020 a 3500	  x	 0.92	 19	 PRO1, DGoMB, S2, S3, S4, S5, S6, S8
	 de	 0.30		
	 máx	 1.61		
	 mín	 0.38
		
3520 a 3795	  x	 0.94	 43	 DGoMB, S1, S2, S3, S4, S5, S6, S7, S8
	 de	 0.27		
	 máx	 1.49		
	 mín	 0.26		
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Discusión

Los valores de COT obtenidos en el sedimento abisal de mar profundo del 
GdM se encuentran dentro del intervalo esperado con respecto a los regis-
trados en la literatura para esta zona (tabla 2). Los valores caen en el límite 
bajo (0.26 a 1.78%) con respecto a sedimentos superficiales de otros márgenes 
continentales (Arthur et al. 1998, Hartnett et al. 1998, Hedges et al. 1999, Keil 
et al. 1994), pero son similares a los reconocidos en el norte del GdM. La 
distribución de COT en la zona es heterogénea encontrándose anomalías en 
estos valores a nivel local, tal como en zonas con actividad quimioautotrófica, 
donde el COT puede originarse de otra fuente distinta a la exportación desde 
la zona eufótica.

Figura 3. Distribución espacial de los valores medios de COT en las 106 estaciones de 
muestreo de sedimento superficial en el mar profundo del SW del Golfo de México
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Gran parte de la investigación existente se ha concentrado en los factores 
que controlan la preservación de la materia orgánica en los sedimentos ma-
rinos (Schultz y Zabel 2000). Dentro de los factores que se han reconocido 
que afectan la preservación del CO se encuentran el origen de la materia 
orgánica (Hedges et al. 1988), el flujo de la PP exportada (Calver y Petersen 
1992), la profundidad de la columna de agua (Suess 1980), los niveles de oxi-
genación de la columna de agua (Canfield 1994, Hartnett et al. 1998), la tasa 
de sedimentación (Toth y Lerman 1977, Berner 1980, Aller y Mackin 1984), 
el tiempo de exposición a la masa oxigenada (Hartnett et al. 1998, Hedges et 
al. 1999, Keil et al. 2004), la geopolimerización (Berner 1980), la dinámica 
microbiana (Lee 1994), y la adsorción a superficies minerales (Mayer 1994a, 
b). Los mecanismos que determinan la conservación de COT no son claros 
(Canfield 1994, Hartnett et al. 1998, Hedges et al. 1999, Keil y Cowie 1999) ya 
que aparentemente son diversos factores los que la afectan en forma indirecta 
o en forma conjunta (Hartnett et al. 1998) o son de difícil interpretación en 
virtud del transporte lateral del sedimento superficial, en particular en la 
elevación continental (Kiel et al. 2004).

A pesar de que se ha descrito que la cantidad de materia orgánica exportada 
se relaciona inversamente con la profundidad (Suess 1980) nuestros datos no 
son contundentes en cuanto a un patrón de disminución exponencial entre 
los 1000 m y 4000 m de profundidad. 

Tabla 2. Promedio y desviación estándar de los valores de COT 
para otras localidades en el océano mundial

Localidad	 Carbono	 Total 
	 Orgánico 	 (COT, %)

Océano Pacífico	 1000–2000 m	 1.38 ± 0.76
	 2000–3000 m	 1.66 ± 0.64
	 >3000 m	 1.18 ± 0.78
Mar Mediterráneo	 2000–3000 m	 0.59 ± 0.05
Océano Atlántico	 2000–3000 m	 0.21 ± 0.09
	 >3000 m	 0.29 ± 0.09
Mar de China	 1000–2000 m	 0.66 ± 0.03
Mar Caribe	 1000–2000 m	 0.40 ± 0.31
	 >2000 m	 0.15 ± 0.12
Océano Índico	 1000–2000 m	 1.84 ± 0.81
	 >2000 m	 1.21 ± 0.60
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